Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae.
نویسندگان
چکیده
Catabolite repression by galactose was investigated in several strains of Saccharomyces cerevisiae grown on different carbon sources. Galactose repressed as much as glucose; raffinose was less effective. Full derepression was achieved with lactate. The functions tested were L-lactate ferricytochrome c oxidoreductase, NAD-glutamate dehydrogenase, and respiration. Galactose repression was observed only in the GAL4 but not in the gal4 strain. The presence of multiple copies of the GAL4 gene enhanced the repression by galactose. Different alleles of the GAL4 gene and the copy number did not affect glucose repression.
منابع مشابه
Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant.
From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose...
متن کاملMetabolic Fate of the Increased Yeast Amino Acid Uptake Subsequent to Catabolite Derepression
Catabolite repression (CCR) regulates amino acid permeases in Saccharomyces cerevisiae via a TOR-kinase mediated mechanism. When glucose, the preferred fuel in S. cerevisiae, is substituted by galactose, amino acid uptake is increased. Here we have assessed the contribution and metabolic significance of this surfeit of amino acid in yeast undergoing catabolite derepression (CDR). L-[U-(14)C]leu...
متن کاملPGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae
BACKGROUND In Saccharomyces cerevisiae galactose is initially metabolized through the Leloir pathway after which glucose 6-phosphate enters glycolysis. Galactose is controlled both by glucose repression and by galactose induction. The gene PGM2 encodes the last enzyme of the Leloir pathway, phosphoglucomutase 2 (Pgm2p), which catalyses the reversible conversion of glucose 1-phosphate to glucose...
متن کاملNutrient sensing and signaling in the yeast Saccharomyces cerevisiae
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression p...
متن کاملImprovement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering.
Through genome-wide transcript analysis of a reference strain and two recombinant Saccharomyces cerevisiae strains with different rates of galactose uptake, we obtained information about the global transcriptional response to metabolic engineering of the GAL gene regulatory network. One of the recombinant strains overexpressed the gene encoding the transcriptional activator Gal4, and in the oth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of general microbiology
دوره 137 5 شماره
صفحات -
تاریخ انتشار 1991